TY - BOOK AU - Witten, Ian H. AU - Frank, Eibe AU - Hall, Mark A. AU - Pal, Christopher J. TI - Data mining : practical machine learning tools and techniques SN - 9780128042915 U1 - 006.312 PY - 2017/// CY - Cambridge PB - MA : Morgan Kaufmann KW - Data mining N1 - Part I: Introduction to data mining 1. What's it all about? 2. Input: Concepts, instances, attributes 3. Output: Knowledge representation 4. Algorithms: The basic methods 5. Credibility: Evaluating what's been learned Part II. More advanced machine learning schemes 6. Trees and rules 7. Extending instance-based and linear models 8. Data transformations 9. Probabilistic methods 10. Deep learning 11. Beyond supervised and unsupervised learning 12. Ensemble learning 13. Moving on: applications and beyond ER -