| 000 | 01203nam a22002297a 4500 | ||
|---|---|---|---|
| 999 |
_c51097 _d52644 |
||
| 003 | ISURa | ||
| 008 | 181105b xxu||||| |||| 00| 0 eng d | ||
| 020 | _a9789532551589 | ||
| 041 | _aEnglish | ||
| 100 |
_aRoyden, H.L. _98983 |
||
| 245 | _aReal analysis | ||
| 250 | _a4th ed. | ||
| 260 |
_aIndia _bPearson _c2015 |
||
| 300 |
_axil,505 p. _c23 cm. |
||
| 500 | _a 1. Set theory -- pt. I. Theory of functions of a real variable. 2. The real number system -- 3. Lebesgue measure -- 4. The Lebesgue integral -- 5. Differentiation and integration -- 6. The classical Banach spaces -- pt. II. Abstract spaces -- 7. Metric spaces -- 8. Topological spaces -- 9. Compact spaces -- 10. Banach spaces -- pt. III. General measure and integration theory. 11. Measure and integration -- 12. Measure and outer measure -- 13. The Daniell integral -- 14. Measure and topology -- 15. Mappings of measure spaces. | ||
| 520 | _a Functions of real variables. Functional analysis. Measure theory. | ||
| 650 |
_a Functions of real variables _967640 |
||
| 650 |
_a Functional analysis _967641 |
||
| 650 |
_aMeasure theory _967642 |
||
| 700 |
_aFitzpatrick, P.M. _967643 |
||
| 942 |
_2ddc _cLN |
||