000 01203nam a22002297a 4500
999 _c51097
_d52644
003 ISURa
008 181105b xxu||||| |||| 00| 0 eng d
020 _a9789532551589
041 _aEnglish
100 _aRoyden, H.L.
_98983
245 _aReal analysis
250 _a4th ed.
260 _aIndia
_bPearson
_c2015
300 _axil,505 p.
_c23 cm.
500 _a 1. Set theory -- pt. I. Theory of functions of a real variable. 2. The real number system -- 3. Lebesgue measure -- 4. The Lebesgue integral -- 5. Differentiation and integration -- 6. The classical Banach spaces -- pt. II. Abstract spaces -- 7. Metric spaces -- 8. Topological spaces -- 9. Compact spaces -- 10. Banach spaces -- pt. III. General measure and integration theory. 11. Measure and integration -- 12. Measure and outer measure -- 13. The Daniell integral -- 14. Measure and topology -- 15. Mappings of measure spaces.
520 _a Functions of real variables. Functional analysis. Measure theory.
650 _a Functions of real variables
_967640
650 _a Functional analysis
_967641
650 _aMeasure theory
_967642
700 _aFitzpatrick, P.M.
_967643
942 _2ddc
_cLN