000 02032nam a22002177a 4500
999 _c51098
_d52645
003 ISURa
008 181105b xxu||||| |||| 00| 0 eng d
020 _a9788121906395
041 _aEnglish
082 _a515.9
_bNAR
100 _aNarayan, Shanthi
_967644
245 _aTheory of functions of a complex variable
260 _aNew Delhi
_bS. Chand
_c2017
300 _aXix, 627 p.
_bsome col.
_c24 cm.
500 _a v. 1. pt. I. Complex numbers. 1. The complex numbers from the algebraic point of view -- 2. The geometry of the complex numbers -- 3. Euclidean, spherical, and non-euclidean geometry -- pt. II. Some results from point set theory and from topology. 1. Convergent sequences of numbers and continuous complex functions -- 2. Curves and regions -- 3. Contour integration -- pt. III. Analytic functions. 1. Foundations of the theory -- 2. The maximum-modulus principle -- 3. The Poisson integral and harmonic functions -- 4. Meromorphic functions -- pt. IV. Analytic functions defined by limiting processes. 1. Continuous convergence -- 2. Normal families of meromorphic functions -- 3. Power series -- 4. Partial-fraction decomposition and the calculus of residues -- pt. V. Special functions. 1. The exponential and trigonometric functions -- 2. The logarithmic function and the general power function -- 3. The Bernoulli numbers and the gamma function -- v. 2. pt. VI. Foundations of geometric function theory. 1. Bounded functions -- 2. Conformal mapping -- 3. The mapping of the boundary -- pt. VII. The triangle functions and Picard's theorem. 1. Functions of several complex variables -- 2. Conformal mapping of circular-arc triangles -- 3. The Schwarz triangle functions and the modular functions -- 4. The essential singularities and Picard's theorems.
650 _aFunctions of complex variables.
_967645
650 _a Flounces (Matematica) View all subjects
_967646
650 _a Functions dune variable complex.
_967647
700 _aMittal, P.K.
_97879
942 _2ddc
_cLN