| 000 | 01156nam a22002297a 4500 | ||
|---|---|---|---|
| 999 |
_c51190 _d52737 |
||
| 003 | ISURa | ||
| 008 | 181218b xxu||||| |||| 00| 0 eng d | ||
| 020 | _a9780128042915 | ||
| 041 | _aEnglish | ||
| 082 |
_a006.312 _b WIT |
||
| 100 |
_aWitten, Ian H. _968413 |
||
| 245 |
_aData mining _bpractical machine learning tools and techniques |
||
| 250 | _a4th ed. | ||
| 260 |
_aCambridge, _b MA : Morgan Kaufmann _c2017 |
||
| 300 |
_axxxii, 621 p. _bsome col. _c23 cm. |
||
| 500 | _a Part I: Introduction to data mining 1. What's it all about? 2. Input: Concepts, instances, attributes 3. Output: Knowledge representation 4. Algorithms: The basic methods 5. Credibility: Evaluating what's been learned Part II. More advanced machine learning schemes 6. Trees and rules 7. Extending instance-based and linear models 8. Data transformations 9. Probabilistic methods 10. Deep learning 11. Beyond supervised and unsupervised learning 12. Ensemble learning 13. Moving on: applications and beyond | ||
| 650 |
_aData mining. _929634 |
||
| 700 |
_aFrank, Eibe _968414 |
||
| 700 |
_aHall, Mark A. _968415 |
||
| 700 |
_aPal, Christopher J. _968416 |
||
| 942 |
_2ddc _cLN |
||