000 01156nam a22002297a 4500
999 _c51190
_d52737
003 ISURa
008 181218b xxu||||| |||| 00| 0 eng d
020 _a9780128042915
041 _aEnglish
082 _a006.312
_b WIT
100 _aWitten, Ian H.
_968413
245 _aData mining
_bpractical machine learning tools and techniques
250 _a4th ed.
260 _aCambridge,
_b MA : Morgan Kaufmann
_c2017
300 _axxxii, 621 p.
_bsome col.
_c23 cm.
500 _a Part I: Introduction to data mining 1. What's it all about? 2. Input: Concepts, instances, attributes 3. Output: Knowledge representation 4. Algorithms: The basic methods 5. Credibility: Evaluating what's been learned Part II. More advanced machine learning schemes 6. Trees and rules 7. Extending instance-based and linear models 8. Data transformations 9. Probabilistic methods 10. Deep learning 11. Beyond supervised and unsupervised learning 12. Ensemble learning 13. Moving on: applications and beyond
650 _aData mining.
_929634
700 _aFrank, Eibe
_968414
700 _aHall, Mark A.
_968415
700 _aPal, Christopher J.
_968416
942 _2ddc
_cLN