| 000 | 01677nam a22002057a 4500 | ||
|---|---|---|---|
| 999 |
_c51413 _d52960 |
||
| 003 | ISURa | ||
| 008 | 190528b xxu||||| |||| 00| 0 eng d | ||
| 020 | _a9781138073661 | ||
| 041 | _aEnglish | ||
| 082 |
_a006.312 _bYEN |
||
| 100 |
_aYE, Nong _972291 |
||
| 245 | _aData mining : theories, algorithms, and examples | ||
| 260 |
_aBoca Raton _bTaylor & Francis _c2014 |
||
| 300 |
_axix, 329 P. _c24 cm. |
||
| 440 |
_aHuman factors and ergonomics. _972292 |
||
| 520 | _apt. 1. An overview of data mining. Introduction to data, data patterns, and data mining -- pt. 2. Algorithms for mining classification and prediction patterns. Linear and nonlinear regression models -- Naïve Bayes classifier -- Decision and regression trees -- Artificial neural networks for classification and prediction -- Support vector machines -- k-Nearest neighbor classifier and supervised clustering -- pt. 3. Algorithms for mining cluster and association patterns. Hierarchial clustering -- K-Means clustering and density-based clustering -- Self-organizing map -- Probability distributions of univariate data -- Association rules -- Bayesian network -- pt. 4. Algorithms for mining data reduction patterns. Principal component analysis -- Multidimensional scaling -- pt. 5. Algorithms for mining outlier and anomaly patterns. Univariate control charts -- Multivariate control charts -- pt. 6. Algorithms for mining sequential and temporal patterns. Autocorrelation and time series analysis -- Markov chain models and hidden Markov models -- Wavelet analysis. | ||
| 650 |
_aData mining. _929634 |
||
| 650 |
_aData mining -- Mathematical models. _972293 |
||
| 942 |
_2ddc _cLN |
||