000 01677nam a22002057a 4500
999 _c51413
_d52960
003 ISURa
008 190528b xxu||||| |||| 00| 0 eng d
020 _a9781138073661
041 _aEnglish
082 _a006.312
_bYEN
100 _aYE, Nong
_972291
245 _aData mining : theories, algorithms, and examples
260 _aBoca Raton
_bTaylor & Francis
_c2014
300 _axix, 329 P.
_c24 cm.
440 _aHuman factors and ergonomics.
_972292
520 _apt. 1. An overview of data mining. Introduction to data, data patterns, and data mining -- pt. 2. Algorithms for mining classification and prediction patterns. Linear and nonlinear regression models -- Naïve Bayes classifier -- Decision and regression trees -- Artificial neural networks for classification and prediction -- Support vector machines -- k-Nearest neighbor classifier and supervised clustering -- pt. 3. Algorithms for mining cluster and association patterns. Hierarchial clustering -- K-Means clustering and density-based clustering -- Self-organizing map -- Probability distributions of univariate data -- Association rules -- Bayesian network -- pt. 4. Algorithms for mining data reduction patterns. Principal component analysis -- Multidimensional scaling -- pt. 5. Algorithms for mining outlier and anomaly patterns. Univariate control charts -- Multivariate control charts -- pt. 6. Algorithms for mining sequential and temporal patterns. Autocorrelation and time series analysis -- Markov chain models and hidden Markov models -- Wavelet analysis.
650 _aData mining.
_929634
650 _aData mining -- Mathematical models.
_972293
942 _2ddc
_cLN