000 01657nam a22003257a 4500
999 _c51433
_d52980
003 ISURa
008 190617b xxu||||| |||| 00| 0 eng d
020 _a9780521540797
020 _a0521540798
041 _aEnglish
082 _a572.8633
_bBIO
100 _aDurbin, Richard
_972493
245 _aBiological sequence analysis
_b probabalistic models of proteins and nucleic acids
260 _aCambridge, Angleterre
_bCambridge University Press
_c1998
300 _axi, 356 p.
_bill.
_c24 cm.
500 _aProbabilistic methods are assuming greater significance in the analysis of nucleotide sequence data. This book provides the first unified, up-to-date and self-contained account of such methods, and more generally of probabilistic methods of sequence analysis, presented in a Bayesian framework.
520 _a 1. Introduction; 2. Pairwise sequence alignment; 3. Multiple alignments; 4. Hidden Markov models; 5. Hidden Markov models applied to biological sequences; 6. The Chomsky hierarchy of formal grammars; 7. RNA and stochastic context-free grammars; 8. Phylogenetic trees; 9. Phylogeny and alignment; Index.
650 _aAmino acid sequence--Data processing
_972494
650 _aNucleotide sequence--Data processing
_972495
650 _aMarkov processes
_972496
650 _aAmino acid sequence--Statistical methods
_972497
650 _aProbabilities
_9675
655 _aNumerical analysis
_972498
655 _aNucleotide sequence--Statistical methods
_972499
655 _a
_972500
700 _aEddy, Sean R.
_972501
700 _aKrogh, Anders
_972502
700 _aMitchison, Graeme
_972503
942 _2ddc
_cLN