000 | 01273nam a22002417a 4500 | ||
---|---|---|---|
999 |
_c51439 _d52986 |
||
003 | ISURa | ||
008 | 190617b xxu||||| |||| 00| 0 eng d | ||
020 | _a9781259096952 | ||
020 | _a1259096955 | ||
041 | _aEnglish | ||
082 |
_a006.31 _bMIT |
||
100 |
_aMitchell, Tom M. _972530 |
||
245 | _aMachine Learning | ||
260 |
_aChennai _bMcGraw-Hill, _c1997 |
||
300 |
_axvii, 414 p. _bill. _c25 cm |
||
440 |
_aMcGraw-Hill series in computer science. _972531 |
||
500 | _a 1. Introduction -- 2. Concept Learning and the General-to-Specific Ordering -- 3. Decision Tree Learning -- 4. Artificial Neural Networks -- 5. Evaluating Hypotheses -- 6. Bayesian Learning -- 7. Computational Learning Theory -- 8. Instance-Based Learning -- 9. Genetic Algorithms -- 10. Learning Sets of Rules -- 11. Analytical Learning -- 12. Combining Inductive and Analytical Learning -- 13. Reinforcement Learning. | ||
520 | _aMitchell covers the field of machine learning, the study of algorithms that allow computer programs to automatically improve through experience and that automatically infer general laws from specific data. | ||
650 |
_aComputer algorithms _95760 |
||
650 |
_aMachine learning _969133 |
||
650 |
_aAlgorithmes. _972534 |
||
942 |
_2ddc _cLN |