000 01273nam a22002417a 4500
999 _c51439
_d52986
003 ISURa
008 190617b xxu||||| |||| 00| 0 eng d
020 _a9781259096952
020 _a1259096955
041 _aEnglish
082 _a006.31
_bMIT
100 _aMitchell, Tom M.
_972530
245 _aMachine Learning
260 _aChennai
_bMcGraw-Hill,
_c1997
300 _axvii, 414 p.
_bill.
_c25 cm
440 _aMcGraw-Hill series in computer science.
_972531
500 _a 1. Introduction -- 2. Concept Learning and the General-to-Specific Ordering -- 3. Decision Tree Learning -- 4. Artificial Neural Networks -- 5. Evaluating Hypotheses -- 6. Bayesian Learning -- 7. Computational Learning Theory -- 8. Instance-Based Learning -- 9. Genetic Algorithms -- 10. Learning Sets of Rules -- 11. Analytical Learning -- 12. Combining Inductive and Analytical Learning -- 13. Reinforcement Learning.
520 _aMitchell covers the field of machine learning, the study of algorithms that allow computer programs to automatically improve through experience and that automatically infer general laws from specific data.
650 _aComputer algorithms
_95760
650 _aMachine learning
_969133
650 _aAlgorithmes.
_972534
942 _2ddc
_cLN