000 01385pam a2200217 a 4500
999 _c51459
_d53006
003 ISURa
008 950822s1995 enka b 001 0 eng
020 _a0198538499
020 _a0198538642
041 _aEnglish
082 0 0 _a006.4
_2BIS
100 1 _aBishop, Christopher M.
_970190
245 1 0 _aNeural networks for pattern recognition
260 _aOxford
_bClarendon Press
_aNew York
_bOxford University Press
_c1995.
300 _axvii, 482 p.
_c24 cm.
500 _axvii, 482 pages : illustrations ; 24 cm Contents: 1. Statistical Pattern Recognition -- 2. Probability Density Estimation -- 3. Single-Layer Networks -- 4. The Multi-layer Perceptron -- 5. Radial Basis Functions -- 6. Error Functions -- 7. Parameter Optimization Algorithms -- 8. Pre-processing and Feature Extraction -- 9. Learning and Generalization -- 10. Bayesian Techniques.
520 _aThis book is the first to provide a comprehensive account of neural networks from a statistical perspective. Its emphasis is on pattern recognition, which currently represents the area of greatest applicability for neural networks. By focusing on pattern recognition, the book provides a much more extensive treatment of many topics than is available in earlier books.
650 0 _aNeural networks (Computer science)
_972626
650 0 _aPattern recognition systems.
_970193
942 _2ddc
_cLN