000 | 01863cam a2200241 a 4500 | ||
---|---|---|---|
999 |
_c51460 _d53007 |
||
003 | ISURa | ||
008 | 090227s2009 maua b 001 0 eng | ||
020 | _a9780262013192 (hardcover : alk. paper) | ||
041 | _aEnglish | ||
082 | 0 | 0 |
_a519.5420285 _bKOL |
100 | 1 |
_aKoller, Daphne _972627 |
|
245 | 1 | 0 |
_aProbabilistic graphical models _bprinciples and techniques |
260 |
_aCambridge, MA _bMIT Press _c2009 |
||
300 |
_axxi, 1231 p. _c24 cm. |
||
440 |
_aAdaptive computation and machine learning. _969132 |
||
500 | _a 1. Introduction -- 2. Foundations -- I. Representation -- 3. Bayesian Network Representation -- 4. Undirected Graphical Models -- 5. Local Probabilistic Models -- 6. Template-Based Representations -- 7. Gaussian Network Models -- 8. Exponential Family -- II. Inference -- 9. Exact Inference: Variable Elimination -- 10. Exact Inference: Clique Trees -- 11. Inference as Optimization -- 12. Particle-Based Approximate Inference -- 13. MAP Inference -- 14. Inference in Hybrid Networks -- 15. Inference in Temporal Models -- III. Learning -- 16. Learning Graphical Models: Overview -- 17. Parameter Estimation -- 18. Structure Learning in Bayesian Networks -- 19. Partially Observed Data -- 20. Learning Undirected Models -- IV. Actions and Decisions -- 21. Causality -- 22. Utilities and Decisions -- 23. Structured Decision Problems -- 24. Epilogue -- A. Background Material. | ||
520 | _aA general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. | ||
650 | 0 |
_aGraphical modeling (Statistics) _972628 |
|
650 | 0 |
_aBayesian statistical decision theory _xGraphic methods. _972629 |
|
650 | 0 |
_aModèles graphiques (Statistique) _972630 |
|
700 | 1 |
_aFriedman, Nir _972631 |
|
942 |
_2ddc _cLN |