000 01863cam a2200241 a 4500
999 _c51460
_d53007
003 ISURa
008 090227s2009 maua b 001 0 eng
020 _a9780262013192 (hardcover : alk. paper)
041 _aEnglish
082 0 0 _a519.5420285
_bKOL
100 1 _aKoller, Daphne
_972627
245 1 0 _aProbabilistic graphical models
_bprinciples and techniques
260 _aCambridge, MA
_bMIT Press
_c2009
300 _axxi, 1231 p.
_c24 cm.
440 _aAdaptive computation and machine learning.
_969132
500 _a 1. Introduction -- 2. Foundations -- I. Representation -- 3. Bayesian Network Representation -- 4. Undirected Graphical Models -- 5. Local Probabilistic Models -- 6. Template-Based Representations -- 7. Gaussian Network Models -- 8. Exponential Family -- II. Inference -- 9. Exact Inference: Variable Elimination -- 10. Exact Inference: Clique Trees -- 11. Inference as Optimization -- 12. Particle-Based Approximate Inference -- 13. MAP Inference -- 14. Inference in Hybrid Networks -- 15. Inference in Temporal Models -- III. Learning -- 16. Learning Graphical Models: Overview -- 17. Parameter Estimation -- 18. Structure Learning in Bayesian Networks -- 19. Partially Observed Data -- 20. Learning Undirected Models -- IV. Actions and Decisions -- 21. Causality -- 22. Utilities and Decisions -- 23. Structured Decision Problems -- 24. Epilogue -- A. Background Material.
520 _aA general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions.
650 0 _aGraphical modeling (Statistics)
_972628
650 0 _aBayesian statistical decision theory
_xGraphic methods.
_972629
650 0 _aModèles graphiques (Statistique)
_972630
700 1 _aFriedman, Nir
_972631
942 _2ddc
_cLN